

INDEX

 PHP Introduce
 PHP Installation
 PHP Syntax
 PHP Variables
 PHP String
 PHP Operators
 PHP If...Else
 PHP Switch
 PHP Arrays
 PHP While Loops
 PHP For Loops
 PHP Functions
 PHP Forms
 PHP $_GET
 PHP $_POST

P H P 2

PHP INTRODUCTION

P H P 3

INTERNET CLIENT SIDE SCRIPT

- Javascript

- Jquery

- VB script

- …

SERVER SIDE SCRIPT

- PHP

- ASP

- JSP

- …

PHP INTRODUCTION

What You Should Already Know

Before you continue you should have a basic understanding of the following:

• HTML/XHTML
• JavaScript

What is PHP?
• PHP stands for PHP: Hypertext Preprocessor
• PHP is a server-side scripting language, like ASP
• PHP scripts are executed on the server
• PHP supports many databases (MySQL, Informix, Oracle, Sybase, Solid, PostgreSQL,

Generic ODBC, etc.)
• PHP is an open source software
• PHP is free to download and use

P H P 4

PHP INTRODUCTION

What is a PHP File?
• PHP files can contain text, HTML tags and scripts
• PHP files are returned to the browser as plain HTML
• PHP files have a file extension of ".php", ".php3", or ".phtml"

What is MySQL?
• MySQL is a database server
• MySQL is ideal for both small and large applications
• MySQL supports standard SQL
• MySQL compiles on a number of platforms
• MySQL is free to download and use

P H P 5

PHP INTRODUCTION

PHP + MySQL
• PHP combined with MySQL are cross-platform (you can develop in Windows and serve on

a Unix platform)

Why PHP?
• PHP runs on different platforms (Windows, Linux, Unix, etc.)
• PHP is compatible with almost all servers used today (Apache, IIS, etc.)
• PHP is FREE to download from the official PHP resource: www.php.net
• PHP is easy to learn and runs efficiently on the server side

Where to Start?
To get access to a web server with PHP support, you can:
• Install Apache (or IIS) on your own server, install PHP, and MySQL
• Or find a web hosting plan with PHP and MySQL support
• Install XAMPP (XAMPP is an easy to install Apache distribution containing MySQL, PHP

and Perl.)
• Install MAMP ("MAMP" stands for: Macintosh, Apache)

• Apache, PHP and MySQL for Mac OS X

P H P 6

PHP INSTALLATION

What do you Need?

• If your server supports PHP you don't need to do anything.
• Just create some .php files in your web directory, and the server will parse them for you.
• Because it is free, most web hosts offer PHP support.

However, if your server does not support PHP, you must install PHP.

• Here is a link to a good tutorial from PHP.net on how to install PHP5:
• http://www.php.net/manual/en/install.php

• Download

• Download PHP for free here: http://www.php.net/downloads.php
• Download MySQL for free here: http://www.mysql.com/downloads/
• Download Apache for free here: http://httpd.apache.org/download.cgi

P H P 7

http://www.php.net/downloads.php

PHP SYNTAX

Basic PHP Syntax

• A PHP script always starts with <?php and ends with ?>.
• A PHP script can be placed anywhere in the document.
• On servers with shorthand-support, you can start a PHP script with <? and end with ?>.
• For maximum compatibility, we recommend that you use the standard form (<?php) rather than the shorthand form.
• A PHP file must have a .php extension.
• A PHP file normally contains HTML tags, and some PHP scripting code.

Below, we have an example of a simple PHP script that sends the text "Hello World" back to the browser:

<html>

<body>

<?php

echo "Hello World";

?>

</body>

</html>

In the example above we have used the echo statement to output the text "Hello World".

P H P 8

PHP SYNTAX

Comments in PHP

• Each code line in PHP must end with a semicolon.
• The semicolon is a separator and is used to distinguish one set of instructions from another.
• There are two basic statements to output text with PHP: echo and print.

In PHP, we use // to make a one-line comment or /* and */ to make a comment block:

<html>

<body>

<?php

//This is a comment

/*

This is a comment block

*/

?>

</body>

</html>

P H P 9

PHP VARIABLES

A variable can have a short name, like x, or a more descriptive name, like carName.

Rules for PHP variable names:

• Variables in PHP starts with a $ sign, followed by the name of the variable
• The variable name must begin with a letter or the underscore character
• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
• A variable name should not contain spaces
• Variable names are case sensitive (y and Y are two different variables)

PHP has no command for declaring a variable.

$myCar="Volvo";

 After the execution of the statement above, the variable myCar will hold the value Volvo.
 Tip: If you want to create a variable without assigning it a value, then you assign it the value of

null.

Let's create a variable containing a string, and a variable containing a number:

<?php
$txt="Hello World!";
$x=16;
?>

P H P 10

PHP VARIABLES

The scope of a variable is the portion of the script in which the variable can be referenced.

PHP has four different variable scopes:
 local
 global
 static
 Parameter

P H P 11

PHP VARIABLES - LOCAL SCOPE

• A variable declared within a PHP function is local and can only be accessed within that function.
(the variable has local scope):

<?php

$a = 5; // global scope

function myTest()

{

echo $a; // local scope

}

myTest();

?>

• The script above will not produce any output because the echo statement refers to the local

scope variable $a, which has not been assigned a value within this scope.

• You can have local variables with the same name in different functions, because local variables
are only recognized by the function in which they are declared.

• Local variables are deleted as soon as the function is completed.

P H P 12

PHP VARIABLES - GLOBAL SCOPE

• Global scope refers to any variable that is defined outside of any function.

• Global variables can be accessed from any part of the script that is not inside a function.

• To access a global variable from within a function, use the global keyword:

<?php
$a = 5;
$b = 10;

function myTest()
{
global $a, $b;
$b = $a + $b;
}

myTest();
echo $b;
?>

• The script above will not produce any output because the echo statement refers to the local scope variable
$a, which has not been assigned a value within this scope.

• You can have local variables with the same name in different functions, because local variables are only
recognized by the function in which they are declared.

• Local variables are deleted as soon as the function is completed.

P H P 13

<?php
$a = 5;
$b = 10;

function myTest()
{
$GLOBALS['b'] = $GLOBALS['a'] +
$GLOBALS['b'];
}

myTest();
echo $b;
?>

PHP VARIABLES - STATIC SCOPE

• When a function is completed, all of its variables are normally deleted. However,
sometimes you want a local variable to not be deleted.

• To do this, use the static keyword when you first declare the variable:

static $rememberMe;

• Then, each time the function is called, that variable will still have the information it
contained from the last time the function was called.

• Note: The variable is still local to the function.

P H P 14

PHP VARIABLES - PARAMETERS

• A parameter is a local variable whose value is passed to the function by the calling code.

• Parameters are declared in a parameter list as part of the function declaration:

function myTest($para1,$para2,...)
{
// function code
}

• Parameters are also called arguments. We will discuss them in more detail when we talk

about functions.

P H P 15

PHP STRING VARIABLES

 The Concatenation Operator
 There is only one string operator in PHP.
 The concatenation operator (.) is used to put two string values together.
 To concatenate two string variables together, use the concatenation operator:

<?php

$txt1="Hello World!";

$txt2="What a nice day!";

echo $txt1 . " " . $txt2;

?>

The output of the code above will be:

Hello World! What a nice day!

• If we look at the code above you see that we used the concatenation operator two times.

This is because we had to insert a third string (a space character), to separate the two
strings.

P H P 16

PHP STRING VARIABLES

 The strlen() function is used to return the length of a string.

 Let's find the length of a string:

<?php
echo strlen("Hello world!");
?>

The output of the code above will be:

12

 The length of a string is often used in loops or other functions, when it is important to know

when the string ends. (i.e. in a loop, we would want to stop the loop after the last character
in the string).

P H P 17

PHP STRING VARIABLES

 The strpos() function is used to search for a character/text within a string.

 If a match is found, this function will return the character position of the first match. If no
match is found, it will return FALSE.

 Let's see if we can find the string "world" in our string:

<?php
echo strpos("Hello world!","world");
?>

The output of the code above will be:

6

 The position of the string "world" in the example above is 6. The reason that it is 6 (and not

7), is that the first character position in the string is 0, and not 1.

P H P 18

PHP OPERATORS - ARITHMETIC OPERATORS

P H P 19

PHP OPERATORS - ASSIGNMENT OPERATORS

P H P 20

PHP OPERATORS - INCREMENTING/DECREMENTING OPERATORS

P H P 21

PHP OPERATORS - COMPARISON OPERATORS

P H P 22

PHP OPERATORS - LOGICAL OPERATORS

P H P 23

PHP OPERATORS - ARRAY OPERATORS

P H P 24

CONDITIONAL STATEMENTS - PHP IF...ELSE STATEMENTS

 The if Statement
 Use the if statement to execute some code only if a specified condition is true.

 Syntax

 if (condition) code to be executed if condition is true;
 The following example will output "Have a nice weekend!" if the current day is Friday:

 <html>
<body>

<?php
$d=date("D");
if ($d=="Fri") echo "Have a nice weekend!";
?>

</body>
</html>

 Notice that there is no ..else.. in this syntax. The code is executed only if the specified

condition is true.

P H P 25

CONDITIONAL STATEMENTS - PHP IF...ELSE STATEMENTS

 The if...else Statement
 Use the if....else statement to execute some code if a condition is true and another code if a condition is false.
 Syntax

 if (condition)
 {
 code to be executed if condition is true;
 }
else
 {
 code to be executed if condition is false;
 }

Example

 The following example will output "Have a nice weekend!" if the current day is Friday, otherwise it will output "Have a nice
day!":

 <html>
<body>

<?php
$d=date("D");
if ($d=="Fri")
{
 echo "Have a nice weekend!";
}
 else
{
 echo "Have a nice day!";
 }
?>

</body>
</html>

P H P 26

CONDITIONAL STATEMENTS - PHP IF...ELSE STATEMENTS

 The if...elseif....else Statement

 Use the if....elseif...else statement to select one of several blocks of code to be executed.

 Syntax

if (condition)
 {
 code to be executed if condition is true;
 }
elseif (condition)
 {
 code to be executed if condition is true;
 }
else
 {
 code to be executed if condition is false;
 }

 Example

 The following example will output "Have a nice weekend!" if the current day is Friday, and "Have a nice Sunday!" if the current day is Sunday.

Otherwise it will output "Have a nice day!":

<html>
<body>

<?php
$d=date("D");
if ($d=="Fri")
 {
 echo "Have a nice weekend!";
 }
elseif ($d=="Sun")
 {
 echo "Have a nice Sunday!";
 }
else
 {
 echo "Have a nice day!";
 }
?>

</body>
</html>

P H P 27

PHP SWITCH STATEMENT

 The PHP Switch Statement
 Use the switch statement to select one of many blocks of code to be executed.
 Syntax

 switch (n)
{
case label1:
 code to be executed if n=label1;
 break;
case label2:
 code to be executed if n=label2;
 break;
default:
 code to be executed if n is different from both label1 and label2;
}

 This is how it works: First we have a single expression n (most often a variable), that is

evaluated once.
 The value of the expression is then compared with the values for each case in the

structure. If there is a match, the block of code associated with that case is executed.
 Use break to prevent the code from running into the next case automatically. The default

statement is used if no match is found.

P H P 28

PHP SWITCH STATEMENT

 Example

<html>
<body>

<?php
$x=1;
switch ($x)
{
case 1:
 echo "Number 1";
 break;
case 2:
 echo "Number 2";
 break;
case 3:
 echo "Number 3";
 break;
default:
 echo "No number between 1 and 3";
}
?>

</body>
</html>

P H P 29

PHP ARRAYS

 A variable is a storage area holding a number or text. The problem is, a variable will hold
only one value.

 An array is a special variable, which can store multiple values in one single variable.
 If you have a list of items (a list of car names, for example), storing the cars in single

variables could look like this:
 $cars1="Saab";
 $cars2="Volvo";
 $cars3="BMW";

 However, what if you want to loop through the cars and find a specific one? And what if you

had not 3 cars, but 300?
 The best solution here is to use an array!

 An array can hold all your variable values under a single name. And you can access the

values by referring to the array name.

 Each element in the array has its own index so that it can be easily accessed.
 In PHP, there are three kind of arrays:

 Numeric array - An array with a numeric index
 Associative array - An array where each ID key is associated with a value
 Multidimensional array - An array containing one or more arrays

P H P 30

PHP ARRAYS - NUMERIC ARRAYS

 A numeric array stores each array element with a numeric index.
 There are two methods to create a numeric array.

1. In the following example the index are automatically assigned (the index starts at 0):

 $cars=array("Saab","Volvo","BMW","Toyota");

2. In the following example we assign the index manually:

 $cars[0]="Saab";
$cars[1]="Volvo";
$cars[2]="BMW";
$cars[3]="Toyota";

Example

In the following example you access the variable values by referring to the array name and index:

<?php

 $cars[0]="Saab";
$cars[1]="Volvo";
$cars[2]="BMW";
$cars[3]="Toyota";
echo $cars[0] . " and " . $cars[1] . " are Swedish cars.";

?>

The code above will output:

Saab and Volvo are Swedish cars.

P H P 31

PHP ARRAYS - ASSOCIATIVE ARRAYS

 An associative array, each ID key is associated with a value.
 When storing data about specific named values, a numerical array is not always the best way to do it.
 With associative arrays we can use the values as keys and assign values to them.

 Example 1

 In this example we use an array to assign ages to the different persons:
$ages = array("Peter"=>32, "Quagmire"=>30, "Joe"=>34);

 Example 2

 This example is the same as example 1, but shows a different way of creating the array:

$ages['Peter'] = "32";
$ages['Quagmire'] = "30";
$ages['Joe'] = "34";
The ID keys can be used in a script:

<?php
$ages['Peter'] = "32";
$ages['Quagmire'] = "30";
$ages['Joe'] = "34";

echo "Peter is " . $ages['Peter'] . " years old.";
?>

The code above will output:
Peter is 32 years old.

P H P 32

PHP ARRAYS - MULTIDIMENSIONAL ARRAYS

 In a multidimensional array, each element in the main array can also be an array.
 And each element in the sub-array can be an array, and so on.

Example

In this example we create a multidimensional array, with automatically assigned ID keys:

 $families = array
 (
 "Griffin"=>array
 (
 "Peter",
 "Lois",
 "Megan"
),
 "Quagmire"=>array
 (
 "Glenn"
),
 "Brown"=>array
 (
 "Cleveland",
 "Loretta",
 "Junior"
)
);

P H P 33

PHP ARRAYS - MULTIDIMENSIONAL ARRAYS

The array previous would look like this if written to the output:

Array
(
[Griffin] => Array
 (
 [0] => Peter
 [1] => Lois
 [2] => Megan
)
[Quagmire] => Array
 (
 [0] => Glenn
)
[Brown] => Array
 (
 [0] => Cleveland
 [1] => Loretta
 [2] => Junior
)
)

P H P 34

PHP ARRAYS - MULTIDIMENSIONAL ARRAYS

Example 2

Lets try displaying a single value from the array above:

echo "Is " . $families['Griffin'][2] . " a part of the Griffin family?";

The code above will output:

Is Megan a part of the Griffin family?

P H P 35

PHP LOOPING

 Often when you write code, you want the same block of code to run over and over again in
a row. Instead of adding several almost equal lines in a script we can use loops to perform
a task like this.

 In PHP, we have the following looping statements:

 while - loops through a block of code while a specified condition is true

 do...while - loops through a block of code once, and then repeats the loop as long as a

specified condition is true

 for - loops through a block of code a specified number of times

 foreach - loops through a block of code for each element in an array

P H P 36

PHP LOOPING - WHILE LOOPS

 The while Loop, The while loop executes a block of code while a condition is true.
 Syntax

 while (condition)
 {
 code to be executed;
 }

 The example below defines a loop that starts with i=1. The loop will continue to run as long as i is less than, or equal

to 5. i will increase by 1 each time the loop runs:

 <html>
<body>

<?php
$i=1;
while($i<=5)
 {
 echo "The number is " . $i . "
";
 $i++;
 }
?>

</body>
</html>

Output:

 The number is 1
The number is 2
The number is 3
The number is 4
The number is 5

P H P 37

PHP LOOPING - WHILE LOOPS

 The do...while statement will always execute the block of code once, it will then check the condition, and repeat the
loop while the condition is true.

 Syntax

 do
 {
 code to be executed;
 }
 while (condition);

 The example below defines a loop that starts with i=1. It will then increment i with 1, and write some output. Then

the condition is checked, and the loop will continue to run as long as i is less than, or equal to 5:

 <html>
<body>

<?php
$i=1;
do
 {
 $i++;
 echo "The number is " . $i . "
";
 }
while ($i<=5);
?>

</body>
</html>

Output:

 The number is 2
The number is 3
The number is 4
The number is 5
The number is 6

P H P 38

PHP LOOPING - FOR LOOPS

 The for loop is used when you know in advance how many times the script should run.
 Syntax

 for (init; condition; increment)
 {
 code to be executed;
 }

Parameters:
 init: Mostly used to set a counter (but can be any code to be executed once at the beginning of the loop)
 condition: Evaluated for each loop iteration. If it evaluates to TRUE, the loop continues. If it evaluates to FALSE, the loop

ends.
 increment: Mostly used to increment a counter (but can be any code to be executed at the end of the iteration)

Note: The init and increment parameters above can be empty or have multiple expressions (separated by commas).

Example
 The example below defines a loop that starts with i=1. The loop will continue to run as long as i is less than, or equal to 5. i will
increase by 1 each time the loop runs:

 <html>
<body>

<?php
for ($i=1; $i<=5; $i++)
 {
 echo "The number is " . $i . "
";
 }
?>

</body>
</html>

Output:

 The number is 1
The number is 2
The number is 3
The number is 4
The number is 5

P H P 39

PHP LOOPING - FOR LOOPS

 The foreach loop is used to loop through arrays.
 Syntax

 foreach ($array as $value)
 {
 code to be executed;
 }

 For every loop iteration, the value of the current array element is assigned to $value (and the array pointer is moved

by one) - so on the next loop iteration, you'll be looking at the next array value.

 Example
 The following example demonstrates a loop that will print the values of the given array:

 <html>
<body>

<?php
$x=array("one","two","three");
foreach ($x as $value)
 {
 echo $value . "
";
 }
?>

</body>
</html>

Output:

 one
two
three

P H P 40

PHP FUNCTIONS

 Create a PHP Function
 A function will be executed by a call to the function.
 Syntax

 function functionName()
{
 code to be executed;
}

 PHP function guidelines:

 Give the function a name that reflects what the function does
 The function name can start with a letter or underscore (not a number)

 Example
 A simple function that writes my name when it is called:

 <html>
<body>

<?php
function writeName()
{
echo "Kai Jim Refsnes";
}

echo "My name is ";
writeName();
?>

</body>
</html>

Output:

My name is Kai Jim Refsnes

P H P 41

PHP FUNCTIONS - ADDING PARAMETERS

 PHP Functions - Adding parameters
 To add more functionality to a function, we can add parameters. A parameter is just like a variable.
 Parameters are specified after the function name, inside the parentheses.

 Example 1
 The following example will write different first names, but equal last name:

 <html>
<body>

<?php
function writeName($fname)
{
echo $fname . " Refsnes.
";
}

echo "My name is ";
writeName("Kai Jim");
echo "My sister's name is ";
writeName("Hege");
echo "My brother's name is ";
writeName("Stale");
?>

</body>
</html>

Output:

My name is Kai Jim Refsnes.
My sister's name is Hege Refsnes.
My brother's name is Stale Refsnes.

P H P 42

PHP FUNCTIONS - ADDING PARAMETERS

 Example 2
 The following function has two parameters:

 <html>
<body>

<?php
function writeName($fname,$punctuation)
{
echo $fname . " Refsnes" . $punctuation . "
";
}

echo "My name is ";
writeName("Kai Jim",".");
echo "My sister's name is ";
writeName("Hege","!");
echo "My brother's name is ";
writeName("Ståle","?");
?>

</body>
</html>

Output:

My name is Kai Jim Refsnes.
My sister's name is Hege Refsnes!
My brother's name is Ståle Refsnes?

P H P 43

PHP FUNCTIONS - RETURN VALUES

 To let a function return a value, use the return statement.
 Example

 <html>
<body>

<?php
function add($x,$y)
{
 $total=$x+$y;
 return $total;
}

echo "1 + 16 = " . add(1,16);
?>

</body>
</html>

Output:

1 + 16 = 17

P H P 44

PHP FORMS - USER INPUT

 The most important thing to notice when dealing with HTML forms and PHP is that any form element in an HTML
page will automatically be available to your PHP scripts.
 Example

 The example below contains an HTML form with two input fields and a submit button:

 <html>
<body>

<form action="welcome.php" method="post">
Name: <input type="text" name="fname" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

</body>
</html>

 When a user fills out the form above and clicks on the submit button, the form data is sent to a PHP file, called

"welcome.php": "welcome.php" looks like this:

 <html>
<body>

Welcome <?php echo $_POST["fname"]; ?>!

You are <?php echo $_POST["age"]; ?> years old.

</body>
</html>

Output could be something like this:
Welcome John!
You are 28 years old.

P H P 45

PHP FORMS - $_GET VARIABLE

 The predefined $_GET variable is used to collect values in a form with method="get"
 Information sent from a form with the GET method is visible to everyone (it will be

displayed in the browser's address bar) and has limits on the amount of information to
send.
 Example

<form action="welcome.php" method="get">
Name: <input type="text" name="fname" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

 When the user clicks the "Submit" button, the URL sent to the server could look something

like this:
 http://www.w3schools.com/welcome.php?fname=Peter&age=37

 The "welcome.php" file can now use the $_GET variable to collect form data (the names of

the form fields will automatically be the keys in the $_GET array):
 Welcome <?php echo $_GET["fname"]; ?>.

 You are <?php echo $_GET["age"]; ?> years old!

P H P 46

PHP FORMS - $_POST VARIABLE

 The predefined $_POST variable is used to collect values from a form sent with
method="post".

 Information sent from a form with the POST method is invisible to others and has no limits
on the amount of information to send.
 Note: However, there is an 8 Mb max size for the POST method, by default (can be

changed by setting the post_max_size in the php.ini file).
 Example

 <form action="welcome.php" method="post">
Name: <input type="text" name="fname" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

 When the user clicks the "Submit" button, the URL will look like this:

 http://www.w3schools.com/welcome.php

 The "welcome.php" file can now use the $_POST variable to collect form data (the names
of the form fields will automatically be the keys in the $_POST array):
 Welcome <?php echo $_POST["fname"]; ?>!

 You are <?php echo $_POST["age"]; ?> years old.

P H P 47

REFERENCES

W3Schools
 http://www.w3schools.com/php/default.asp

PHP: Hypertext Preprocessor
 http://www.php.net/

XAMPP
 http://www.apachefriends.org/en/xampp.html

APACHE
 http://www.apache.org/

MYSQL
 http://www.mysql.com/

P H P 48

http://www.w3schools.com/php/default.asp
http://www.w3schools.com/php/default.asp
http://www.w3schools.com/php/default.asp
http://www.w3schools.com/php/default.asp
http://www.php.net/
http://www.php.net/
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.mysql.com/
http://www.mysql.com/

ค ำถำม

1. สรำ้งหน้ำ php เพื่อแสดงชื่อและนำมสกุลของตนเอง ?

2. ท ำให ้ชื่อ และ นำมสกุล เป็นตวัแปร และน ำมำต่อกนั เพื่อแสดงบน Browser ?

3. นบัตวัอกัษร ของชื่อ และ นบัตวัอกัษรของนำมสกุล เพื่อแสดงบนหน้ำจอ

4. ใหห้น้ำเวบ็แสดง เกรด ใหถู้กตอ้งโดยใช ้php Conditional statement
“A” เมือ่คะแนน มำกกว่ำ หรอื เท่ำกบั 80
“B” เมือ่คะแนนอยูท่ีร่ะหว่ำง 70 - 79
“C” เมือ่คะแนนอยูท่ีร่ะหว่ำง 60 - 69
“D” เมือ่คะแนนอยูท่ีร่ะหว่ำง 50 – 59
“F” เมือ่คะแนนน้อยกว่ำ 50

5. ใหห้น้ำเวบ็สมำมำรถเปลีย่นภำษำ ไดโ้ดย ใหผ้ลลพัธเ์ป็นตวัแปร (เปลีย่นภำษำทีต่วัแปร ก่อนแสดงผล)
“ดมีำกๆ” เมือ่คะแนน มำกกว่ำ หรอื เท่ำกบั 80
“ดมีำก” เมือ่คะแนนอยูท่ีร่ะหว่ำง 70 - 79
“ด”ี เมือ่คะแนนอยูท่ีร่ะหว่ำง 60 - 69
“พอใช”้ เมือ่คะแนนอยูท่ีร่ะหว่ำง 50 – 59
“ควรปรบัปรงุ” เมือ่คะแนนน้อยกว่ำ 50

P H P 49

ค ำถำม

6. จำกขอ้ 5-6 ท ำใหเ้ป็น Function

7. จำกขอ้ 5-7 ท ำใหส้ำมำรถรองรบั คะแนน คู่กบั กำรเลอืกภำษำ จำก Array ได ้

8. สรำ้งตำรำงส ี
9.1 ไล่ส ีหนึ่งส ี
9.2 ไล่ส ีสองส ี
9.3 ไล่ส ีสำมส ี

9. ท ำ from เพื่อ เป็นหน้ำจอ เครือ่งคดิเลขเพื่อส่งค่ำ ผ่ำน get ของ php เพื่อค ำนวณผลลพัธแ์ลว้แสดงผลเมือ่กดค ำนวณ

10. สรำ้งตำรำงปฎทินิ โดยผ่ำนหน้ำ Form โดย Input คอื
ภำษำทีต่อ้งกำรแสดงผล
วนั เริม่ตน้ของเดอืน
จ ำนวนวนัสุดภำยในเดอืน

P H P 50

